功率电感生产厂家
联系我们
热门搜索
点击排行
推荐阅读
猜猜你喜欢的
技术知识 您所在的位置: 首页 > 技术知识

探测机器人煤矿井下地图创建

来源:    作者:    发布时间:2016-09-07 06:43:22    浏览量:


  本文中采用了多光谱传感器和短波红外传感器相融合的方式检测井下环境中泥泞的环境。

  在遥感领域内,当采用近红外光谱和红色反射空间绘制光谱数据的时候,裸土的多光谱数据会落在一条线上面(简称为土壤线)。裸土在土壤线上的位置由土壤的水分含量决定。湿的土壤在土壤线的一端,干的土壤在土壤线的另一端。为了测量土壤的水分含量,采用了邓肯科技的MS2100多光普传感器,其光谱扫描范围为400-1000nm。这种传感器是基于颜色分离棱镜和三个成像通道,通过一个共同的孔径可以获得四种光谱带(红色,绿色,蓝色,近红外),如图9所示。

红色反射空间

  图9红色反射空间

  通过安装固定在机器人上的多光谱传感器,采集到了2组实验数据。一组数据为裸土和地面杂物;另一组为一条较长的路面。在这两个测试地面上洒上一定的水,使地面变成泥泞的状态。在图10中显示的是在第一种地形中的红色和近红外光谱。图中也表示了红光和近红外光的反射率在像素表中的比率。红色的小区域代表干燥的土壤,绿色的小区域代表泥泞的地方,而蓝色的区域代表处于阴影中的干燥土壤。黄线是由最小二乘法得到的线条。从上面的实验数据可知,土壤线现象能够基于地面上的传感器获得,在对地面干燥与泥泞分类上有一定的效果。

红色和近红外光谱

    图10红色和近红外光谱

  在图10中显示了使用多光谱带去分离出泥泞的区域。图10(a)(b)分别是在红光谱下和近红外光谱下对测试环境的采集图像,通过采集到的图像很容易对杂物,路面和地面中的泥泞区域分类。分类结果如图10(c)(d)所示。

  为了对井下泥泞路面的检测结果更加准确,使机器人在路径规划中选择最优的路径,更好的完成人们给机器人下达的任务,本文中又采用另一种方法与多光谱分离方法相融合。

  水对于短波红外具有很强的吸收能力,因此泥泞的土壤也具有这样的属性。Lobell和Asner在2002年就已经用光谱仪和一个校准过的光源在实验室中测量了四种含水量等级不同的土壤对短波辐射(400-2500nm)的反射能力。他们的报告中说,当用可见光反射,土壤水分含量在20%时就达到饱和,而用短波红外在土壤水分含量50%时才达到饱和。他们得出的结论是短波红外比近红外更适测量土壤的水分含量。研究结果表明了随着土壤水分含量的增加,在短波红外带上土壤的反射系数的拐点是在1450nm附近。这也证明了短波红外适合检测泥泞的路面。

  在井下移动机器人上安装了一个SU320M-1.7RT短波红外传感器也来检测泥泞的井下路面。

短波红外传感器和通用的摄像头采集到的图像对比

  图11短波红外传感器和通用的摄像头采集到的图像对比

  图11显示的是用短波红外传感器和通用的摄像头采集到的图像对比实验。在图11(下)中可以明显的分辨出路面的干湿程度,用聚类的方法就可以将泥泞的区域分离出来。

  通过以上两种传感器(多光谱传感器和短波红外传感器)的相互融合,将大大提高对井下环境中泥泞路面的检测精度,为井下移动机器人任务的顺利完成又增加了一层安全保障。

  4路径规划

  DEEC是一台具有辅助臂的履带式机器人,它的主要特点是对非平整路面环境的适应能力较强,因此对它的运动控制不同于其他工作于室内结构环境或室外具有平坦路面环境的移动机器人。对于工作于平整路面的移动机器人来说,其路径规划的主要目标是从地图中没有被障碍物占据的自由空间集合中搜索可达规划目标点的最优路径。例如在传统的栅格地图中,只需要判断栅格是否被障碍物占用,如果被占用则采取壁障的策略,假若存在无法避开的障碍物则会导致路径规划的失败。而对于DEEC来说,除了考虑到其自身安全性因素而尽量选取无障碍物通道之外,还可以选择通过对障碍物的翻越或攀爬在更大的空间内实现路径的规划任务,因此DEEC的路径规划需要一个具有高程信息的地图来表达路面环境信息。

  5结束语

本文从煤矿井下地图创建的需求出发,采用双目视觉方法创建井下2.5维栅格地图,并对探测机器人路径进行了规划。
  • 基于DSP的DGPS导航定位系统的设计与实现全球定位系统GPS(Global Positioning System)是一种无线电导航系统,它不仅具有全球性、全天候和连续的精密三维定位能力,而且还能实时对运载体的速度、姿态进行测定以及精密授时。目

  • 实例解析脱机式LED照明设计因应脱机式LED在一般照明的应用需求,LED驱动器除须提供电气隔离、高效率、PFC 0.90和TRIAC调光功能外,还要有良好的LED电流调节,以保持一致的亮度。同时,不管输入电压或LED正向电压如何

  • SDRAM在图形生成电路中的应用 摘 要: 针对机载座舱显示器对高分辨率图形实时生成与显示的应用需求,提出了一种基于SDRAM帧存的图形生成电路实现方法。该方法以DSP作为图形处理器执行图形运算算法,以FPGA作为协处理器

  •