功率电感生产厂家
联系我们
热门搜索
点击排行
推荐阅读
猜猜你喜欢的
最新动态 您所在的位置: 首页 > 最新动态

基于一种低成本的新型步进电机驱动器的研制

来源:    作者:    发布时间:2015-03-12 10:09:58    浏览量:

2.2 半流锁定功能的实现   

步进电机在运行过程中,为输出较大的转矩及具有快速响应,应保持绕组电流为额定值而不使其下降。但在电机的锁定状态通常没必要输出大的绕行电感转矩,为减少电机的发热,提高系统的效率,减轻驱动器的负担,可在锁定状态适当降低绕组电流。本驱动器设计的锁定电流减半功能电路如图2所示。图中,CLK为步进脉冲信号CP经过光耦隔离后的信号。该电路中采用可重复触发的单稳态触发器74LS123,其输出脉冲宽度TW为:   

当CLK的周期小于或等于TW时,晶体管一直处于截止状态,不存在锁定时间。而当CLK的周期大于TW或处于静止状态时,晶体管导通,电阻R1并联至参考电压端,使参考电压减半,即实现了电流减半的功能。

图2 半流锁定功能电路图   

2.3 分立式的功率驱动电路的设计   

步进电机的功率驱动电路较为典型的设计一般都是采用集成电路,例如用双H桥高电压大电流功率集成电路L298,IR公司的MOSFET驱动集成电路等。然而对于L298,虽然简单方便,但是只可驱动母线电源电压为46V、每相电流2A以下的步进电机,因而它的电源输入范围相对较窄,局限性较大;而对于IR公司的MOSFET驱动集成电路,它的通用性很强,但是价格相对较贵,并不适于低成本的驱动器。为了避免上述集成电路的缺陷,在该步进电动机驱动器中,功率驱动电路采用分立器件来实现。

功率电路采用大功率双H桥电路,上半桥使用P沟道功率MOSFET IRF9540,下半桥使用N沟道功率MOSFET IRF540。这样可以满足驱动母线电源电压为85V、相电流7A的步进电机的要求。而且采用这种结构,可以简化驱动电路电源的设计,因为再不需要多个隔离的驱动电源,可以使母线电源与驱动电源共地。对于上桥P沟道功率MOSFET的栅极驱动采用由NPN和PNP三极管构成的互补式驱动电路,使MOSFET输入电容充放电电路的电阻都很小,加速了功率管的通断。并通过并接一个13V的稳压二极管,使得当母线电压较高时钳位MOSFET的栅源驱动电压,以避免其超过栅源击穿电压。而对于下桥N沟道功率MOSFET的栅极驱动采用简单的NPN三极管驱动放大电路,这样改善了MOSFET的开通过程,而且减少了驱动电源的功率;并在三极管的基极与发射极反并联二极管,这样就为输入电容提供了放电回路,加速了功率管的关断过程。当驱动电路直接来驱动功率MOSFET时会引起被驱动功率MOSFET的快速开通和关断,这就有可能造成被驱动功率电感生产厂家MOSFET漏源极间电压的振荡。这样,一则会引起射频干扰;二则有可能造成功率MOSFET遭受过高的 而击绕行电感器穿损坏。为解决这一问题,采用在被驱动空心线圈电感功率MOSFET的栅极与驱动电路的输出之间串联一个15 的无感电阻。具体的上、下半桥驱动电路分别如图3和图4所示。L297输出的载有斩波信号的INH1、INH2,与时序逻辑信号A、B、C、D经过逻辑门电路的恰当组合,产生PWM1和PWM2信号,作为驱动电路的斩波信号输入端。

  图3 上半桥驱动电路

图4 下半桥驱动电路   

2.4 高频开关电源电路的实现   

  • 基于80C196的采样与A/D处理介质损耗仪是一种测试高压绝缘体性能状况的仪器,原理为从标准通道取得的电信号与被试通道取得的电信号相比较、分析与处理来得出被试体的绝缘状况。被试体可等效为电阻与电容的并联。图1为原理结构图。在分析处理中

  • 小于IGBT开通时间的驱动信号把管子开通么?小于IGBT开通时间的驱动信号把管子开通么?比如我的驱动信号高电平只持续1us,而IGBT的开通时间需要2us?例子的时间可能不大合适,只是假设而已,我想知道能开通么?望指教~~~按你的假

  • 基于MSP430F149的变频伺服系统的设计与研究 近年来,伺服系统的发展始终以稳定性、响应性与精度为发展主轴,这也是用户在使用过程中最为看重的几大因素。在机床伺服系统、机器人控制系统、雷达天线控制系统等场合大都由直流伺服电机和直流伺服控制器来完成控

  •