永磁同步电机控制系统的串行通信实现
来源: 作者: 发布时间:2014-12-28 11:49:29 浏览量:在开发一套以DSP为核心的永磁同步塑封电感电机控制系统时,需要及时观察驱动系统中的各个变量,同时还要对一些程序进行控制,修改特定参数。DSP在实际运行中不能用外接的端口进行控制,需要用DSP自带的串行通信模块来解决这一问题。通过一台上位计算机和以DSP为核心的电机控制系统构成整个监控系统,Pc机通过串口来改变DSP程序中转矩、磁链给定,以及调节PI参数等,电机控制系统完成对电机的控制,并采集相关数据反馈到Pc机中进行分析、处理、显示和存储。本文以DSP控制永磁同步电机为例,介绍在整个控制系统中串行通信的实现。
塑封电感器1 永磁同步电机控制系统
永磁同步电机控制系统框图如图1所示,采用直接转矩控制方法,这是19世纪80年代提出的交流电机高性能控制策略。本控制系统是一个速度和转矩的双闭环控制系统。系统利用电压、电流传感器检测直流母线电压Vdc。及定子二相电流i 和i ,通过坐标变换将定子三相坐标系中的电压、电流变量转换为α-β静止定子坐标系中的二相分量。将由磁链及转矩观测器得到的定子磁链、转矩实际值作为反馈量,与磁链、转矩给定值进行比较,所得到的误差信号通过磁链、转矩调节器的滞环控制单元后,获得0、1控制信号,再综合考虑当前定子磁链所在的区域,选择适当的电压空问矢量控制定子磁链的旋转速度及方向,即可直接快速地实现转矩调节。
如果试验人员能够及时地观测并调节转矩、磁链、电压、电流等控制参数,将会极大地提高电机控制系统的开发效率。
2 串行通信的实现
PC机与DSP串行一体成型电感器通信的实现包括三个部分,即硬件设计、上位机程序设计、下位机程序设计。
2.1 串行通信硬件设计
从本试验平台实际需要考虑,采用RS-232实现PC机与DSP的数据传输。现在RS。232的通信端口是每台计算机上的必要配置,通常含有COM1和 COM2两个端口,所以能很方便地把上位机与下位机连接起来,实现计算机对生产现场的监测和控制。图2是TMS320LF2407串行通信接1:1电路电感器厂家 [1]。该电路采用了符合RS-232标准的驱动芯片MAX232进行串行通信。MAX232芯片功耗低,集成度高,+5 V供电,具有2个接收和发送通道。由于TMS320LF2407采用+3.3 V供电,需要将5 V的1tI1L电平变换为3.3 V高电平,整个接口电路简单,可靠性高。
2.2 上位机程序设计
Delphi是一种面向对象的可视化编程工具,拥有功能强大的集成开发环境和速度极快的编译器,兼具Visual C++的强大功能和VB易学易用的特点。通过安装MSComm控件,可在Delphi环境下方便地实现串行通信[2]。MSComm提供了两种处理通信问题的方法:一种是事件驱动法,一种是查询法。本系统选用事件驱动法,该方法程序响应及时,可靠性高。只要了解使用MSComm的属性及事件的用法就可以实现对串口的操作。
其主要属性有 :
(1)eommport属性,用于设置并返回连接的串行端口号;
(2)settings属性,以字符形式设置并返回串口的波特率、奇偶校验、数据位、停止位参数;
(3)po~open属性,用于设置或返回通信连接端口的状态;
(4)input属性,用于从输入缓冲区返回并删除字符;
(5)output属性,用于将要发送的数据输入传输缓冲区;
(6)inputlen属性,用于指定由串行端I:I读入的字符串长度或字节数;
(7)handshaking属性,用于指定通信双方的握手协议;
(8)rthreshold属性,用于设置或返回引发接收事件的字节数;
(9)sthreshold属性,用于设置并返回传输缓冲区中允许的最小字符数;
(10)commevent属性,在通信错误或事件发生时都会产生oncomm事件;
(11)inbufercount属性,用于接收缓冲区中的字符数;
(12)inputmode属性,用于设置或返回input属性取回数据的类型。
程序设计中首先要对MSComm进行初始化,可以双击MSComm控件设置,也可以在程序中修改。
电感加工厂本系统根据需要自行设计了通信协议。
数字控制UPS电源技术及应用传统的UPS采用模拟电路控制,对于生产厂家和用户而言,无论是相控技术还是SPWM技术,模拟控制存在诸多局限性。随着信息技术的发展,高速数字信号处理芯片(Digital Signal Processor
怎样开始设计无线传感器网络系统一、无线传感器网络技术应用广泛,百花齐放 无线传感器和传感器网络,是具有非常广泛的市场前景,将会给人类的生活和生产的各个领域带来深远影响的新技术。美国的《技术评论》杂志在论述未来新兴十大技术时,更是
基于DSP的嵌入式显微图像处理系统的设计显微图像处理是数字图像处理的一个重要研究领域,随着其技术的不断发展,已经在材料、生物、医学等领域得到了广泛应用[1][2]。目前的显微图像处理通常利用图像采集系统将显微图像采集到计算机中再进行图像处理