超低电压能量收集器利用废热为无线传感器供电
来源: 作者: 发布时间:2015-03-03 06:18:58 浏览量:当在一个温暖的表面放置 TEG 以收集能量时,必须给 TEG 温度较低的一侧增加散热器,以允许热量传送到周围空气中。由于散热器的热阻,在 TEG 上呈现的 ∆T 将低于温暖表面和环境之间的温度差,因为 TEG 具有相对较低的热阻 (典型情况下在 1°C/W 至 20°C/W 范围内)。
参见图 2 所示的简单热模型,考虑如下例子,一个大型机器一体电感在周围环境温度为 25°C、表面温度为 35°C 的情况下工作。将一个 TEG 连接到这台机器上,同时在 TEG 温度较低 (环境温度) 的一侧加上一个散热器。
图 2:TEG 和散热器简单的热模型
散热器和 TEG 的热阻确定了 10oC总温差 (∆T) 的哪一部分存在于 TEG 的两端。假定热源 (RS) 的热阻可忽略不计,如果 TEG 的热阻 (RTEG) 为 4°C/W,散热器的热阻 (RHS) 也为 4°C/W,那么落在 TEG 上的 ∆T 仅为 5°C。
由于较大的 TEG 表面积增大了,所以大型 TEG 比小型 TEG 热阻低,因此需要较大的散热器才有利。在受到尺寸或成本限制而必须使用相对较小的散热器的应用中,较小的 TEG 也许比大型 TEG 提供更多的输出功率。热阻等于或小于 TEG 热阻的散热器可最大限度地提高 TEG 上的温度差,因此能最大限度地提高电输出。
脉冲负载应用设计例子
由TEG 供电的典型无线传感器应用如图 3 所示。在这个例子中,TEG 上至少有 4°C 的温差可用,因此选择 1:50 的变压器升压比,以实现最高的输出功率。
图 3:无线传感器应用例子
LTC3108 提供一个典型的无线传感器所需的多个输出。2.2V LDO 输出给微处理器供电,而 VOUT 利用 VS1 和 VS2 引脚设定到 3.3V,以给 RF 发送器供电。开关 VOUT (VOUT2) 由微处理器控制,以仅在需要时给 3.3V 传感器供电。当 VOUT 达到稳定值的 93% 时,PGOOD 输出向微处理器发出指示信号。为了在输入电压不存在时保持工作,在后台从 VSTORE 引脚给 0.1F 存储电容器充电。这个电容器可以充电至高达 VAUX 并联稳压器的 5.25V 箝位电压。如果失去输入电压源,那么就自动由存储电容器提供能量,以给该 IC 供电,并保持 VLDO 和 VOUT 的稳定。
根据以下公式确定 COUT 存储电容器的大小,共模电感以在 10ms 的持续时间内支持 15mA 的总负载脉冲,从而在负载脉冲期间允许 VOUT 有 0.33V 的下降。请注意,IPULSE 包括 VLDO 和 VOUT2 以及 VOUT 上的负载,但充电电流未包括在内,因为与负载相比,它可能非常小。
考虑到这些要求,COUT 必须至少为 454µF,因此选择了一个 470µF 的电容器节能灯电感器。
采用所示 TEG (以及大小合适的散热器),在贴片电感器 ∆T 为 5°K 时工作,那么 LTC3108 在 3.3V 时提供的平均充电电流约为 560µA。用这些数据,我们可以计算出,首次给 VOUT 存储电容器充电需要花多长时间,以及该电路能以多大频度发送脉冲。假定充电阶段 VLDO 和 VOUT 上的负载非常小,那么 VOUT 最初的充电时间为:
假定发送脉冲之间的负载电流非常小,那么一种简单估计最大发送速率的方法是,用从 LTC3108 可获得的平均输出功率 (在本例情况下为 3.3V • 560µA = 1.85mW) 除以脉冲期间所需功率 (在本例情况下为 3.3V • 15mA = 49.5mW)。收集器可以支持的最大占空比为 1.85mW/49.5mW = 0.037 或 3.7%。因此最大脉冲发送速率为 0.01/0.037 = 0.27 秒或约为 3.7Hz。
请注意,如果平均负载电流 (如发送速率所决定的那样) 是收集器所能支持的最大电流,那么会没有剩余的收集能量给存储电容器充电。因此,在这个例子中,发送速率设定为 2Hz,从而留出几乎一半的可用能量给存储电容器充电。V
高效率隔离式LED驱动器实现方案一、设计特色1、精确的初级侧恒压/恒流控制器(CV/CC)省去了光耦器和所有次级侧CV/CC控制电路,无需电流检测电阻,即可达到最高效率;使用元件少、低成本的解决方案。2、自动重启动保护功能可在输出短
长条形线圈的电感如何计算长条形线圈的电感如何计算,求公式
非线性电路功率因数的定义功率因数一词,源于基本的交流电路原理。当正弦波交流电源给感性或容性负载供电时,负载电流也是正弦的,但是比输人电压滞后或超前一个角度甲。若输人电压有效值为U,输人电流有效值为F,则电网输人的视在功率为J