功率电感生产厂家
联系我们
热门搜索
点击排行
推荐阅读
猜猜你喜欢的
研发资讯 您所在的位置: 首页 > 研发资讯

精确的无线温度传感器可为自身供电

来源:    作者:    发布时间:2015-01-20 18:23:34    浏览量:

电阻器网络从 2.5V 基准吸取最大 25µA 电流。为了避免测量之间的功率损耗,将基准电源的工作周期调整为仅在测量期间导通。ADC 输入的 RC 时间常数大约为 5ms。通过在进行测量之前 80ms接通电源,可确保 ADC 输入完全稳定。实际上,既然两个输入节点以相同的斜率接通,所以远远不用理论的稳定时间那么久,读数就已准确。LT6654 由 LTC3330 的 3V LDO 输出供电。在读取温度读数之前和之后的恰当时间,LTP5901 微处理器驱动 LTC3330 中 LDO 的使能引脚至高电平和低电平。

在未进行转换时,LTC2484 自动进入休眠模式。与无线电已经很低的功率相比,1µA 的睡眠电流更低。因此,不必设定至 ADC 供电电源的占空比。通过保持 ADC 的电源电压始终插件电感器与 LTP5901 相同,可确保 SPI 接口上的逻辑电平始终保持不变,这有助于实现简单的设计。

通过 SPI 端口提供转换结果以后,LTC2484 自动地开始进行新的转换,并将转换结果存储到其内部寄存器色环电感中,直到用户再次要求读取转换结果。在需要非常频繁地读取温度值的系统中,这种工作方式是非常便利。但是,有些超低功率应用可能在两次读数之间等待很长时间。为了确保提供给用户的温度数据始终是“新鲜”的读数,这类应用首先切换 CSb 和 SCK 引脚,以将“陈旧的”温度读数从 ADC 寄存器中移出,然后自动地开始进行新的温度转换。微处理器一直等待到转换结束为止,然后通过 SPI 端口读取结果。即使新的温度读取过程会再次自动开始,但是系统接下来会关闭热敏电阻器网络 (通过关闭 LDO),因为这些额外的温度读数随后将被忽略。

该温度传感器电路的总功耗可以按如下方法估计。首先,求基准 (350uA)、热敏电阻器网络 (25µA) 和 ADC (转换时为 160µA) 的电流之和,所得总电流为 535µA (参见表 1)。然后,考虑这一电流持续多长时间。ADC 每次转换大约耗时 140ms,在每次转换之前,等待 80ms,以让基准和热敏电阻器稳定。再加上一些 SPI 读数所需时间,这样接通时间大约为 300ms。在 300ms时间内消耗 535µA 电流,相应于 160µC 的电荷量。我们应该在这个电荷量之上,再加上给 4.7µF 电源旁路电容器充电至电压基准所需的电荷量,因为每次读数时这个节点都从 0V 充电至 3V。加上这个 14µC 的电荷量,每次读取温度数据时所需的总电荷量为 174µC。如果每隔 10 秒读取一次温度数据,那么就可计算出,平均电流消耗为 17µA。其他平均电源电流的例子在表 2 中给出。

表 1:信号链路电流消耗 (工作时)

表 1:信号链路电流消耗 (工作时)

表 2:基于温度读取频率进行电源管理的信号链路的平均电流消耗

表 2:基于温度读取频率进行电源管理的信号链路的平均电流消耗

LTC3330 管理这个应用的所有电源。该芯片含有两个开关模式电源和一个线性稳压器,采用小型单片封装。降压-升压型转换器可从电池取得功率,以保持稳定的输出电压 (对这个应用而言设定为 3.6V)。一个单独的降压型转换器可从太阳能电池板取得功率,也将输出电压调节至相同的值。一个内部优先级区分器确保尽可能使用太阳能电源,仅当一体成型电感需要时才会从电池吸取功率 (图 3)。对于其他应用,LTC3330 还支持 AC 能量收集电源,例如产生与振动能量成比例的 AC 电压之压电晶体 (参见图 4)。

图 3:LTC3330 从太阳能电池板或电池取得功率,自动地设定这两种电源的优先级,以保持稳定输出电压。一个额外的 LDO 输出由逻辑输入引脚控制,这用来设定温度传感器电源的占空比。LTC3330 产生一个输出标记,以指示正在使用的是太阳能电源还是电池电源。

图 3:LTC3330 从太阳能电池板或电池取得功模压电感器率,自动地设定这两种电源的优先级,以保持稳定输出电压。一个额外的 LDO 输出由逻辑输入引脚控制,这用来设定温度传感器电源的占空比。LTC3330 产生一个输出标记,以指示正在使用的是太阳能电源还是电池电源。

  • 基于FPGA的三轴伺服控制器设计与实现0 引言在运动控制系统中,多轴伺服控制器的设计一直是该领域的重要内容之一。目前伺服控制器的设计多以DSP或MCU为控制核心,但DSP的灵活性不如FPGA,且在某些环境比较恶劣的条件如高温高压下DSP的

  • 直流输电技术在智能电网的应用常规HVDC 技术在智能电网的应用超高压直流输电技术在远距离大容量输电、异步联网、海底电缆送电等方面具有优势,因而得到了广泛应用。而特高压直流输电更可以有效节省输电走廊,降低系统损耗,提高送电经济性,

  • 为什么 TB上 PC50材质 的 磁芯 这么少,几乎没有有什么渠道 可以 买到 各种各样的 PC50材质的 磁芯么? 支持购买数量 10个内的因为市场需求量少所以就少咯!我想买TDK的PC47材质都找不到合适的,还谈PC50。大多是PC40的。

  •