功率电感生产厂家
联系我们
热门搜索
点击排行
推荐阅读
猜猜你喜欢的
研发资讯 您所在的位置: 首页 > 研发资讯

耗尽型工艺实现锂电池充电保护芯片的设计

来源:    作者:    发布时间:2015-03-24 10:23:09    浏览量:

  该电路是具有负反馈功能的基准电路,产生基准电压Vbd、Vb1、V b2.因为电源在非正常情况下波动范围很大, 所以电容C 的作用是使电路对电源波动太大时不敏感; SD 是电路工作的使能端, 低电平有效; R22、R21、R25 构成负反馈网络, R23、R24 构成分压电路。

  当耗尽型MOS 管M84 工作在线性区时, 由于VGS84=0, 则M84 为一个电阻, M81 和M82 将处于饱和区工作, 输出电压可以负反馈回来从而稳定输出。

  其推导公式为:


当耗尽型MOS 管M84 工作在饱和区时, VGS84=0,M84 为一个恒流源, 所以VGS82 恒定, 即Vbd 不变,从而输出Vb1、Vb2 也保持不变。其中Vbd、Vb1、Vb2分别为过充电、过放电比较器提供基准电压, 并且为延时产生电路提供偏置电压。其推导公式为:

  要使式( 7) 等于式( 10) , 即无论M84 工作在什么区域VGS82 都不变, 则:

  所以可以通过调节M84 和M82 的宽长比(W/L) 使之满足式( 11) ,电感器生产 使VGS82 保持恒定; 通过调小管子的阈值电压( 调节管子的掺杂浓度) 来减小基准电压源的电流从而减小功模压电感耗。采用0.6 μm、n 阱的CMOS 工艺在Hspice 中仿真的结果如图3 所示。

2.2 过充电、过放电迟滞电路

  为了更快地解除过充电、过放电状态, 图1 中过充电、过放电比较器的输入差分电压须随电源电压的改变而改变, 当电池过充或过放时, 输出电压随电源电压变化的比例不同, 因此设计出图4 所示的迟滞电路。

 由图4 可知, 通过控制TCU 和TDL 的开关来控制MN1 和MP1 的导通与关断, 达到调节点IN_CON 和IN_ODP 电压大小的目的, 以实现迟滞效应。当输出信号在和过充比较器和过放比较器相比较时, 比较基准电压不变, 计算过充电、过放电的迟滞电压分别为:

  由式( 12) 和( 13) 可知, 根据具体设计要求的不同, 调节R26、R27、R28、R29、R30 和R31 的大小及比例关系以达到实现不同迟滞电压的目的。

  2.3 0 V共模电感器电池充电禁止电路

  当电池电压低于一定值时, 使CO 输出为低电平从而禁止充电器对电池进行充电。在此过程中因为VDD 比较低VM 会变得很负, 所以VDD 和VM 之间易形成很大的电流, 则VDD 到VM 之间的每一条支路上要有比较大的电阻。采用如图5 所示的电路来控制CO 的电压和VDD 到VM 之间的电流。

  图5 中M1、M2、M3、M4、Rl 和R2 组成的电路完成电平转换功能, 抑制功能主要由M5、M6 和R3完成, M7、M8、M9、M10 和R4 组成的与非门在电平转换功能和0 V 抑制功能之间进行选择。电路需要将逻辑低电平转化为与VM 相同的电位。而VM的电位有可能很负, 在电路转换瞬间, VDD 和VM之间的高电压很容易将普通的MOS 管击穿,基于此, 本电路的所有管子都采用高压非对称管。

  0 V 电池抑制功能发生在充电过程中, 此时,IN_ LCB=0, IN_ LC=1,VA 为高电平。当电池电压VDD 在1.2 V 左右时, 就认为它是内部短路。在这种情况下充电, 充电电流一定很大, 导致VM 的电位下降很大, VDD 的下降使M5 关闭, VM 的下降使M6 导通, 从而VB 由低电平转化为高电平(此时的VDD 电压为0 V 电池充电禁止电压V0INH) , CO 电电感传感器位因此接近VM 电位。

  • 单火线电路请问有没有人搞过单火线,能不能开源共享一下,那些网上的资料我都看了,都是点到即止,没什么意义,都是告诉原理之类的,具体的就什么都没有了。给位论友,讨论下沙发难道论友没有人实际

  • 现代背光驱动器的效率超越技术长电池寿命是便携式电子产品市场的关键指标。LCD显示器的LED背光驱动器占了总有效系统功耗的25%至40%。在过去,设计师尽量减少背光显示器功耗的工具仅限于降低LED驱动电流,同时提高转换器的效率。今

  • 便携产品电源芯片的设计技巧标签:LDO PCB随着便携产品日趋小巧轻薄,对电源管理芯片也提出更高的要求,诸如高集成度、高可靠性、低噪声、抗干扰、低功耗等。本文探讨了在便携产品电源设计的实际应用中需要注意的各方面问题。便携产品的

  •