功率电感生产厂家
联系我们
热门搜索
点击排行
推荐阅读
猜猜你喜欢的
技术支持 您所在的位置: 首页 > 技术支持

基于ISO14443A协议的RFID芯片模拟前端设计

来源:    作者:    发布时间:2016-03-12 13:34:55    浏览量:

3.2 数据接收
图4为数据接收电路,即解调电路。读卡器向卡发送的数据是载波为13.56 MHz、数据率为106 kb/s的100%的幅度调制信号,波形可以看作106 kHz的方波与13.56 MHz的正弦波的乘积。数据解调的原理是:一体成型电感当RF1电压为正弦波时(即有效数据1部分),电压信号由D0、I0、C1、C2构成的包络检波整形。在A点得到直流电压为VREF6并带有一定纹波的电压信号,纹波的大小由C1、C2、I0的大小决定。选取REF6=0.6 V,VREF3=0.3 V,比较器输出高电压。当RF1电压由正弦变为0(有效数据0部分)时,由于A点信号反应速度高于放大器带宽,包络检波的A点电压迅速降低,使VA<VREF3,比较器输出低电压,并且关闭放大器,使A点电压稳定在0,比较器的输出保持0,等待下一个数据。

e.JPG


由于工艺与温度的偏差,导致I0、C1、C2的值发生变化,A点的纹波大小会发生变化。在RF1为正弦波,也就是数据为1的时候,若A点的纹波大于2(VREF6~VREF3),数据解调将发生错误。比较器在有效数据为1时应输出高电压,但是由于A点电压纹波过大导致比较器输出在数据为1输出13.56 MHz的方波,解调失败。可以通过提高VREF6的值,从而提高A点纹波的容忍工字电感度,来解决这个问题。但是若A点电压过高,使A点反应速度低于放大器带宽,数据由1变为0时,A点不能迅速作出反应,产生低电压,所以不能解调出数据0。所以VREF6的值的选取需要适中,最好可以由系统动态配置。
3.3 数据发送
图5为数据发送电路,即调制电路。卡发送到读卡器的是载波为13.56MHz,数据率为847kb/s的幅度调制信号。此电路的原理是采用负载调制的方法达到协议要求的幅度调制的目的。当不需要发送数据时,数据线为0,RF1、RF2为13.56MHz的载波。需要发送数据时,数据线为847 kHz米勒编码的方波。当数据为0时,RF1、RF2上的正弦电压幅值较大。当数电感价格据为1时,M1打开,将RF1、RF2上的电压拉低,即RF1、RF2上正弦信号的幅值变低,数据的变化会导致RF1、RF2上载波幅值变化,从而完成数据的发送。

f.JPG


卡向读卡器发送数据时,系统上作出了优化,使模拟电路的设计变得简单可靠。当发送数据1时,由线圈耦合过来的能量大部分由M1释放,从而导致用于芯片正常工作的能量变少,使芯片不能正常工作,交互失败。所以,当向外发送数据时,软件使芯片内部嵌入的8051处理器进入休眠模式,降低整个芯片的功耗,从而使芯片安全渡过电源不足的阶段。功率电感器

4 仿真与测试
图6为仿真结果,卡与读卡器的交互分为3个阶段:
①二者无数据交互,此时卡开始上电或者处理接收到的数据,此时电源电压稳定;
②接收数据,线圈发出的上是100%的幅度调制信号,DATA_IN为解调后的数据;
③发送数据,卡产生的DATA_OUT是847 kHz的方波,对线圈上的电压进行负载调制,调制后线圈上的电压信号是幅度调制信号,这些信号会被读卡器耦合并解调。

g.JPG


在整个交互过程塑封电感中电源电压保持稳定。测试结果与仿真结果基本一致。

结语
本文讨论了RFID芯片模拟前端的实现方法,在电源产生、数据收发方面采用了新技术,并且从整个系统上作了优化,简化了模拟前端的设计,使整个系统更可靠。该芯片已通过小额支付与门禁系统的实验室测试,其对恶劣外界干扰的抵御能力需要进一步测试与改进。

  • TLC5615串行数模转换器在开关电源中的应用开关电源具有体积小、效率高、重量轻、噪声低等优点,其应用越来越广泛。我们在设计蓄电池充电器时,就采用开关电源作为主电路,其中开关器件采用第三代IGBT,其主要优点是耐压高,驱动功率小,开关频率高,导通

  • 基于频率跟踪型PWM控制的臭氧发生器电源的研究1 概述 臭氧的强氧化能力和杀菌能力使其在水处理、化学氧化、食品加工和医疗卫生等许多领域具有广泛的应用。臭氧发生器的物理结构和等效电路如图1所示。当臭氧发生器负载两端的外加电压低于气体放电起始电压Vs

  • 3节12V电压逆变单相380V各位高手,本人打算设计一个产品,正常情况下输入380V三相输出380V三相,此时还可以给3节12V电瓶充电,当380V不稳定或断电情况下,3节12V电源逆变成单相380V电压到输出端,各位大神给支

  •