功率电感生产厂家
联系我们
热门搜索
点击排行
推荐阅读
猜猜你喜欢的
技术知识 您所在的位置: 首页 > 技术知识

通过优化变换器的FET开关来改善能量效率

来源:    作者:    发布时间:2015-03-29 14:00:16    浏览量:

 在计算和消费电子产品中,效率共模电感器已经有了显著的提高,重点是AC/DC转换上。不过,随着80 PLUS,C深圳电感厂limate Savers以及EnergyStar 5等规范的出现,设计人员开始认识到,AC/DC和DC/DC功率系统都需要改进。

  AC/DC平均系统效率在65%左右,而DC/DC平均系统效率为80%,所以不难理解为什么大家侧重于AC/DC系统。不过,现在应该重新检查DC/DC系统,找出改善效率的新方法。

  计算、通信和消费应用系统中的DC/DC负责转换、管理并分配功率,为显卡、处理器芯片以及内存等功能提供电能,而所有这些功能都面临着提高性能的需求,因此就比任何时候都需要更高的效率。已经有研究利用MOSFET的最新进展以及先进的热封装技术来提高现有的开关电路和相关的功率晶体管器件的效率。

  仔细选择电源部件,特别是车载的同步降压变换器,可以大幅度改善新平台的功率密度、效率一体电感以及热性能。例如,如果有50万台服务器都完全符合80 PLUS能源规定的要求,那么所节省的能源足以供应超过377 000户家庭的用电。

  电路和损耗

  降压或同步降压电路是所有低电压DC/DC功率管理系统的重负荷部件,而所有同步降压电路中的主要功率损耗来自MOSFET的开关和传导损耗。

  在任何台式电脑中都可以找到常见的降压整流器(VRM),如图1所示,这种整流器在满载时可以提供超过25A的电流和1.2V的输出。因此,1个MOSFET将位于主通路中或高边插槽,而2个并联的MOSFET将位于飞轮或底边插槽中。将12V的输入降压为1.2V的输出,那么占空比是10%,所以高端MOSFET将调节为低开关损耗,而低端MOSFET对将把RDS(ON)调节到最低,以最小化传导损耗。

台式电脑中常见的电压整流器

图1 台式电脑中常见的电压整流器

  由分立的驱动器和MOSFET实现的多相VRM VCORE方案的典型峰值效率是90%,出现在每相额定电流10A处,而在满载30A电流时,效率降低到85%。对于今天的设计人员而言,完整的VRM系统通常输出功率为100W,效率为85%,也就是说功率损耗为15W。

  硅基MOSFET的逐步改进

  MOSFET厂商主要通过两种方式来优化工艺的发展。首先,为了改善产品的开关特性(开关速度),他们实施了先进的栅极结构设计,降低了栅极电荷(Qg)效应。其次是增加单元密度,也就是说,在大小相同的晶片上,导通电阻显著降低。RDS(ON)和电流是MOSFET传导损耗的两项决定因素,传导损耗的计算公式很简单:

Ploss=I2×RDS(ON) 传导损耗

Ploss=1/2V×I×(Tr+Tf)×F 开关损耗

  图2显示了Fairchild公司≤30V的N沟道MOSFET单元密度的进步。每个条形都表示新的工艺进步。可以看到,在最近的十年中,单元密度从3200万单元/平方英寸增加到现在的10亿单元/平方英寸。

小于30V的N沟道MOSFET中单元密度的进步

图2 小于30V的N沟道MOSFET中单元密度的进步

  MOSFET性能系数

  在业界,常用的性能测量方法始终是性能系数(FOM),而从根本上讲,这只不过是综合考虑了晶体管导通电阻和栅极电荷。

  FOM=RDS(ON)×Qg

  RDS(ON)直接与传导损耗有关,而Qg直接与开关损耗有关。FOM越小,性能越好。

  图3显示了低电压MOSF电感生产ET工艺发展中FOM的进步。对于2004年实施的PowerTrench3而言,最好的FOM是240,而今天的PowerTrench5硅工艺中最好的FOM是126。

低电压MOSFET性能系数

图3 低电压MOSFET性能系数(FOM)的进步

  遗憾的是,FOM降低50%并不意味着MOSFET损耗减少50%,因为它们的关系不是线性的。不过,通过仔细的选择和优化,今天的MOSFET仍然可以显著降低系统的功率损耗。

  系统级效率

  因此,功率MOSFET是DC/DC功率电路中功率损耗的罪魁祸首,通过采用先进的器件,可以将这一损耗大幅降低。那么这与系统总体效率有什么样的关系呢?

  设计人员寻求方法来改善负荷分别为低、中等、高时整个机器工作范围内的系统效率。在满载时,例如在计算机启动或者处理工序繁忙时,功率系统中传导损耗占主导。只需选择RDS(ON)较小的MOSFET就可以显著降低损耗。非常有趣的是,大多数PC在工作使用期中大部分时间处于待机或睡眠状态,因此低负荷时的效率非常重要。

  • 一种夹层电阻结构及其应用1 引言在集成电路的线路设计中,特别是模拟电路的设计中,不可避免地都会需要用到电阻。对于低阻值的应用,一般可以用铝线电阻、多晶电阻、N+电阻或者P+电阻等实现。对于更大一点的电阻,则可以用N阱电阻、P

  • 同样的磁环,同款的电源,两颗磁环对调后,其中一款EM 跪求各位大侠


    同样的磁环,同款的电源,两颗磁环对调后,其中一款EMI就过不了,换回来全部都可以过EMI.其他有影响的元器件都对调了,判定就这款磁环就有问题,搞不明白什么原因,并

  • LED照明和太阳能充电的技术挑战及解决方案 作为一种既环保又节能的解决方案,LED照明在汽车、家庭、办公楼、酒店、机场和路灯等广泛的应用场合找到了自己的用武之地。但它的大规模商用除了还要克服成本障碍以外,还需要解决调光闪烁、散热、色彩均匀性等

  •