功率电感生产厂家
联系我们
热门搜索
点击排行
推荐阅读
猜猜你喜欢的
最新动态 您所在的位置: 首页 > 最新动态

降压开关电源设计过程中控制技术分析及选择

来源:    作者:    发布时间:2015-05-17 10:00:26    浏览量:

  

(6)

  其中,Se是校正斜坡的斜率, Sn是检测到的电流波形的斜率。

  

(7)

  阻尼因子表示为:

  

(8)

  公式(3)中的第一项表明增益是负载阻抗RL和电流检测增益Ri的函数。第二项给出了斜波补偿项。当校正斜坡斜率Se大于电流波形的正斜率Sn时,斜波补偿因子Mc充分增加,从而对增益进行衰减。

  第三项给出了起决定作用的低频特性。它具有一个由输出电容的ESR引入的零点,以及单极点wp,该极点的数值由输出电容和负载阻抗决定。

  第四项包含两个位于开关频率一半处的极点。这些极点的峰值受阻尼因子Qp控制,而阻尼因子又进一步受校正斜坡控制。如果斜坡太小,这些极点将使调节器的环路增益到达最高点,如果占空比大于50%,在一半开关频率处的环路增益将超过0dB。这将导致电流模式控制发生次谐波振荡。

  电流模式控制最主要的弱点在于,难以测量具有小占空比的电流。这种测量方式易受噪声影响,并且调制有时可能会不稳定。

  磁滞控制技术:简单快速
另一个可能的方案是磁滞控制技术(见图3)。调制器就是一个具备内置输入磁滞(几毫伏)的比较器,用于比较反馈电压和参考电压。当反馈电压大于参考电压半个磁滞电压时,比较器的输出变低,关闭开关。开关将一直保持关闭状态,直到反馈电压跌到比参考电压低半个磁滞电压为止。

  

  图3 磁滞降压稳压器的基本架构(LM3485)

  这种拓扑结构可以对负载瞬态变化做出极快的响应,非常简单而且不需要频率补偿。

  这种方案的主要问题在于开关频率不是由振荡器设定,不恒定而且依赖于很多变量。开关频率很大程度上依赖于元件参数和工作条件的变化。输入电压、负载电流、电感值和输出电容(特别是它的等效串联电阻ESR)都对开插件电感关频率有很大影响。

  这种控制DC电压的技术优点在于简单的控制环路。很容易使控制器稳定。

  控制环路不仅稳定而且响应非常迅速(响应延迟仅为90ns)。与大占空比(达到100%)特性相结合,可以产生非常迅速的瞬态响应。与竞争的调节器架构(PWM电流模式或电压模式)相比一体电感器,它更具有优势。

  由于开关频率不是由可控振荡器设定,它将随不同的外部元件和输入电压的变化而发生变化。如果在特定应用中要求开关频率固定,将很难找到合适的设计方案。

  恒定开启时间的磁滞控制技术

  如上所述,磁滞控制技术具备一些有趣功率电感器的优势,唯一的问题在于开关频率不可预测。

  如果在一个传统的磁滞控制技术中,加入与输入电压成反比的单次触发开启时间,开关频率就会保持相对恒定。可以应用于任意降压调节器(工作在连续导通模式)的基本降压调节器公式定义了降压开关的占空比D。

  D=Vout/Vin =Ton·Fs (9)

  其中,Ton是开启时间, Fs 是工作频率。

  如果把开启时间设定成与输入电压Vin成反比。

  Ton=K·Ron/Vin (10)

  其中,K是常数,Ron是可编程电阻,把公式(10)中的Ton代入到公式(9)中,解出Fs 。

  Fs =Vout/(K·Ron) (11)

  既然Vout、 K和Ron都是常数,工作频率也将是常数。实际上,真实的工作频率将会变化大约10%,这由单次触发的非线性、传播延迟和非理想的开关压降造成。

  • 高效率F类射频功率放大器的研究与设计 1 引言射频功率放大器广泛应用于各种无线通信发射设备中,随着移动通讯服务的快速增长,对低耗、高效、体积小的要求也迅速增加。众所周知,RF功放(PA)是射频传输中功率损耗最大的众多设计模块之一。当前发

  • Agilent N2782B电流探头的信号传输延时双脉冲测量SiC MOSFET的开关特性,由于测量漏源极电压的差分探头和测量漏极电流的电流探头Agilent N2782B存在几个ns的信号传输延时,在测量波形和计算开关损耗时,需要补偿两个测

  • 高精度半导体激光器驱动电源系统的设计O 引 言 半导体激光器(LD)是一种固体光源,由于其具有单色性好,体积小,重量轻,价格低廉,功耗小等一系列优点,已被广泛应用。LD是理想的电子-光子直接转换器件,有很高的量子效率,微小的电流和温度变

  •