功率电感生产厂家
联系我们
热门搜索
点击排行
推荐阅读
猜猜你喜欢的
技术知识 您所在的位置: 首页 > 技术知识

基于DSP的混合悬浮控制系统的硬件设计

来源:    作者:    发布时间:2016-04-15 06:13:11    浏览量:

  图3 悬一体电感浮斩波器的拓扑结构

  前级处理电路

  前级处理电路其主要功能是完成传感器信号的放大,与基准信号的比较,以及信号的转换,滤波。由于没有采用速度传感器,而通过软件方法获得的信号又不能令耦合电感人满意,可设计对气隙信号进行微模压电感分处理的微分电路,如图4所示。

  图4 微分电路

  此电路的输入与输出关系为:

  A/D转换电路

  A/D转换电路实现采样保持和A/D转换两种功能,它是在TMS320LF2407A微处理器控制下完成操作的。本文采用MAX125芯片实现这一部分功能。

  根据MAX125接口电路的特点,设计如图5所示与TMS320LF2407A的接口电路。

  图5 MAX125和TMS320LF2407A的接口电路

  D/A转换电路

  D/A转换电路选用TI公司的高性能D/A转换器TLC7225,它片内包含四路8位电压输出数/模转换器(DAC),每个DAC都有分离的片内锁存器。数据通过一个公共的8位TTL/CMOS兼容(5V)输入口送入这些数据寄存器之一。

  实验结果

  混合悬浮系统的参数如下所示:

  

  图6为悬浮系统慢浮起过程的示波器记录。混合悬浮系统初始机械气隙为0.02m,稳定悬浮机塑封电感械气隙为0.015m。

  X轴:2.00s/div;一通道Y轴:2.00V/div;二通道Y轴:1.00V/div

  图6 混合悬浮系统慢起浮气隙实验结果

  图7给出了混合悬浮系统慢起浮电流的实验结果。电感器厂家

  X轴:2.00s/div;Y轴:2.00V/div 电流钳:100mV/A

  图7 混合悬浮系统慢起浮电流实验结果

  实验结果表明该硬件设计能够实现电磁铁的稳定悬浮。

  结论

  与传统的纯电磁悬浮系统相比,电磁和永磁组成的混合悬浮系统在相同悬浮功率的情况下可实现大气隙悬浮,即可达到20mm左右的悬浮气隙,这可降低车载蓄电池容量和重量,降低列车的自重,增加有效载荷,因而可以降低轨道精度要求,从而降低轨道工程造价。该系统采用以TMS320LF2407A为核心的悬浮控制电路,具有非常快的数据处理能力,克服了模拟电感厂家控制器和以单片机为核心的数字控制器的缺陷。通过实验实现了系统的稳定悬浮,验证了设计的合理性。

  • 白光LED的PWM驱动原理本文设计一种基于PWM的可调光LED驱动电路,可提供LED所需的电压和电流,且具有色温高、经济实用、寿命长的特点。白光LED的电学特性具有很强的离散性,而且白光LED是一种同态电光源,是一种半导体照明

  • DSP数字多功能板的工作原理与实现1 引言音板(tone)、主叫号码显示板、多频互控收发器板、双音频接收器板等是程控交换机重要的公共设备。这些设备在程控交换机中是一块块不同的硬件单板,这些单板都是以专用集成电路(IC)来实现其功能的。

  • CCFL推挽式缓冲电路无抑制时的漏极电压图1详细列出了使用15V直流电源工作时,推挽式驱动器的典型栅极驱动电压和漏极电压波形。在推挽式驱动结构中,当互补MOSFET开启时,正常情况下漏极电压会升至直流电源电压的两倍(或者本

  •