功率电感生产厂家
联系我们
热门搜索
点击排行
推荐阅读
猜猜你喜欢的
最新动态 您所在的位置: 首页 > 最新动态

高频和微波功率基准及其应用研究----微量热计基本理论研究(三)

来源:    作者:    发布时间:2015-05-24 06:50:27    浏览量:

2.4.2.3有效效率偏差被忽略的原因

由式(2-40)可见,有效效率和效率的偏差由G21/G10决定,虽然不可能精确测得热导值,但采用下面的方法可以近似估计G21/G10。

和量热计一样,热电堆对热敏电阻处功率的稳态响应系数K2和热电堆对功率座壁处功率的稳态响应系数K1可表示为

其中,e2和e1分别是热电堆对热敏电阻处功率P2和功率座壁处功率P1的输出电压。根据式(2-45),可实际测量得到K2和K1的值,实验结果表明热电堆对不同位置功率的稳态响应系数不同,K2略大于K1。

由于热电堆的输出电压正比于温度变化,由式(2-33)和(2-41)可知,K2、K1可用G21、G10表示,即

以往的研究和实验表明,对波导热敏电阻座,K2和K1的差异在0.1%以内 ,考虑到测量误差,可以近似估计G21/G10小于0.5%,波导热敏电阻座的效率一般大于95%,当效率为95%时,根据式(2-40)计算的有效效率与效率偏差小于0.025%,而波导微量热计有效效率的测量误差一般大于0.2%,所以一直没有发现这项偏差,波导微量热计理论中没有考虑这一偏差的影响。

同轴微量热计是在波导微量热计基础上发展起来的,同样没有考虑到这一偏差。对N型同轴热敏电阻座,K2和K1的差异在1%以内 ,可以近似估计G21/G10小于2%,N型同轴热敏电阻座的效率一般大于95%,当效率为95%时,有效效率与效率偏差在0.1%以内,而N型同轴微量热计的测量误差在0.5%左右,很难发现偏差。

实际上,由于一直错误的认为Psub = P2RF,即直流替代功率等于热敏电阻吸收的高频和微波功率,所以以往的微量热计的有效效率计算式为

由式(2-37)和(2-47)比较可知,式(2-47)计算的并不是有效效率,它的计算结果会比有效效率小,更接近效率。由式(2-43),可以求得

用效率表示式(2-48),得

式(2-49)代入式(2-47),得

ηeffC与效率的差为

根据式(2-51),效率ηs =0.9、G21/G10在2%以内时,被修正的有效效率值ηeffC与效率的差小于0.02%.

这也是一直以来,高频和微波功率计量研究从未涉及到这项偏差的原因。但随着测量频率的提高,效率逐渐下降,某些热敏电阻功率座G21/G10较大,这项偏差逐渐显现出来。

以NIST的2.4毫米接头微量热计中的热敏电阻功率座为例,这是Agilent公司专为NIST设计制作的功率座,其结构如图2-13所示。由于需要覆盖50MHz~50GHz的频段范围,现有的热敏电阻珠结构不能使用,改用半导体技术结合热电耦功率传感器结构,设计出具有热敏电阻功率座特性的测辐射热功率传感器。

由图2-13可见,热敏电阻的功能由三部分组合实现,其中50欧姆负载实现热敏电阻的吸收高频和微波功率的功能,1kΩ测温电阻紧靠负载,测量负载的温度变化,直流偏置电路提供直流偏置功率给1kΩ电阻,保持1kΩ测功率电感器温电阻的阻值不变。

这一结构尽管实现了热敏电阻功率座的测辐射热功能,但特性较差,其G 21 /G 10接近4,且有效效率范围为(84%~94%)。

为验证和比较各国在2.4mm接头型式上的功率量值,美国NIST模压电感组织进行了电感式位移传感器2.4mm接头型式功率国际比对。这次比对使用了两个比对标准,代号分别是3629和3815,除了英国NPL和美国NIST用各自的同轴基准进行比对,其他参加比对的实验室均是采用波导基准加波导同轴转换器进行比对。图2-14是2.4毫米接头功率国际比对在45GHz和50GHz这两个频率点的数据,可以看出NIST在频率高端的数据明显高于采用量热计功率基准的英国NPL。

  • 高效率隔离式LED驱动器实现方案一、设计特色1、精确的初级侧恒压/恒流控制器(CV/CC)省去了光耦器和所有次级侧CV/CC控制电路,无需电流检测电阻,即可达到最高效率;使用元件少、低成本的解决方案。2、自动重启动保护功能可在输出短

  • 利用多节电池监视器 IC 尽量地延长可再充电电池如果允许任何一节或几节电池过度放电,那么可再充电电池组的性能就会过早地发生劣化。当电池组变至完全放电状态时,最弱的那一节或几节电池的 ILOAD RINTERNAL 电压降将会超过内部 VCELL 化

  • 基于DSP Builder数字信号处理器的FPGA设计DSP技术广泛应用于各个领域,但传统的数字信号处理器由于以顺序方式工作使得数据处理速度较低,且在功能重构及应用目标的修改方面缺乏灵活性。而使用具有并行处理特性的FPGA实现数字信号处理系统,具有很强的

  •