功率电感生产厂家
联系我们
热门搜索
点击排行
推荐阅读
猜猜你喜欢的
技术支持 您所在的位置: 首页 > 技术支持

大功率LED驱动电路研究设计

来源:    作者:    发布时间:2015-03-30 10:35:41    浏览量:

摘 要:根据大功率LED的供能要求,从EMI滤波、功率因素电感电容滤波器校正、半桥谐振转换三个方面着手,以FAN6961和FSFR2100为控制芯片,设计了一款大功率的高效率LED驱动电路,在90~264VAC的线路输入和满载下,功率因数高于93%,效率高于85%,并具有低输入电流谐波失真和低EMI。

0 引言

大功率LED以其高效率、无污染、长寿命等诸多优势正备受人们的青睐,但是大功率LED需要低电压、大电流的塑封电感器驱动电源,为了突出大功率LED的优势,就要求驱动电源具有较高的效率,较高的功率因数,并且可以过压、过流、过热保护。

1 原理与设计

本文所设计电路主要分为EMI模块、PFC变换器和DC/DC变换器三个部分,其中EMI模块采用双环滤波,达到了较理想的效果;采用飞兆FAN6961芯片作为PFC变换器的控制芯片,使用Boost变换,使功率因数得到提高;DC/DC变换器采用LL绕行电感器C谐振,以FSFR2100为控制器件,达到了较高的效率,其基本结构如图1所示。

图1 驱动电源设计结构

1.1 EMI模块

开关电源的干扰信号按传导模式可分为共模干扰信号和差模干扰信号。根绝其特点可粗略地划分为三个频段:

0.15~0.5MHz差模干扰为主;0.5~5MHz差、共模干扰共存;5~30MHz共模干扰为主。在设计时,如果哪个频段不达标,可针对该频段加强滤波效果。例如在0.15~0.5MHz频段不达标,可以加强差模干扰信号的抑制,增大电容Cx的值或添加差模扼流圈;如在5~30MHz频段不达标,可以加强共模干扰信号的抑制,增大Cy的值或增加共模滤波的级数。在抑制干扰信号时,重点还是放在共模干扰信号的抑制上。

图2 双环EMI滤波器

1.2 PFC变换器设计

1.2.1 Boost变换工作原理

Boost变换器亦称并联开关变换器。当驱动控制信号使开关晶体管VT导通时,能量从输入电源输入,并存储于电感L中,二极管VD反偏,负载由滤波电容C供给能量。

当VT截止时,电感L中的电流不能突变,它所产生的感应电势阻止电流减小,电势的极性左负右正。二极管VD导通,电感中储存的能量通过二极管VD流入电容C,并供给负载。

图3 Boost变换器电路结构

1.2.2 基于Boost的PFC变换器设计

我们可以看出在开关管导通期间,电感电压等于输入电压,电感电流随之线性增加,二极管D1截止,辅助绕组的电压随之增加,电流检测电阻的电压线性上升;当导通时间到达Ton时,开关管断开。当开关管断开时,电感电压降低,电感电流通过二极管D1流向负载,辅助绕组的电压随之降低,电流检测电阻上无电流流过,开关管再次开通前,电流检测电阻上电压已经为0;而零电流检测端电压波形与开关管驱动波形的脉冲刚好相反,当零电流检测端电压将为0时,开关管又开始导通,新一轮的周期开始。可以看出电路工作在临界导电模式下。

图4 FAN6961的外围电路

由下式我们得出开关管S的电流应力为:1.93A。

  • TI工程师诠释更精巧的电源解决方案本文详述电源电路的最新发展状况。文中还将介绍数款器件,说明电路架构与封装技术的进步如何促成体积更小的电源解决方案。把不同功能集成到同一芯片是PDA、便携式导航系统 (GPS) 和智能型手机等便携式产品

  • UCC2897有源钳位正激问题请教各路高手,请教你们一个问题,我刚用UCC2897做了一款样板,有些问题,请教一下,请大家支招。非常感谢。
    现象:空载的时候,输出可能有3V 左右的电压输出。但是带上0.2A的负载就输出电压

  • 软开关功率开关管的发展现代电力电子朝着小型化、轻量化方向发展.对效率和电磁兼容也有了更高的要求。随着电力电子装置的高频化的发展趋势.滤波器、变压器体积和重量减小,电力电子装置小型化、轻量化。但同时导致开关损耗增加,电磁干扰

  •